43 research outputs found

    On the Interplay of Foveated Rendering and Video Encoding

    Get PDF
    Publisher Copyright: © 2020 Owner/Author.Humans have sharp central vision but low peripheral visual acuity. Prior work has taken advantage of this phenomenon in two ways: foveated rendering (FR) reduces the computational workload of rendering by producing lower visual quality for peripheral regions and foveated video encoding (FVE) reduces the bitrate of streamed video through heavier compression of peripheral regions. Remote rendering systems require both rendering and video encoding and the two techniques can be combined to reduce both computing and bandwidth consumption. We report early results from such a combination with remote VR rendering. The results highlight that FR causes large bitrate overhead when combined with normal video encoding but combining it with FVE can mitigate it.Peer reviewe

    Foveated Streaming of Real-Time Graphics

    Get PDF
    Remote rendering systems comprise powerful servers that render graphics on behalf of low-end client devices and stream the graphics as compressed video, enabling high end gaming and Virtual Reality on those devices. One key challenge with them is the amount of bandwidth required for streaming high quality video. Humans have spatially non-uniform visual acuity: We have sharp central vision but our ability to discern details rapidly decreases with angular distance from the point of gaze. This phenomenon called foveation can be taken advantage of to reduce the need for bandwidth. In this paper, we study three different methods to produce a foveated video stream of real-time rendered graphics in a remote rendered system: 1) foveated shading as part of the rendering pipeline, 2) foveation as post processing step after rendering and before video encoding, 3) foveated video encoding. We report results from a number of experiments with these methods. They suggest that foveated rendering alone does not help save bandwidth. Instead, the two other methods decrease the resulting video bitrate significantly but they also have different quality per bit and latency profiles, which makes them desirable solutions in slightly different situations.Peer reviewe

    A computational framework for revealing competitive travel times with low-carbon modes based on smartphone data collection

    Get PDF
    Evaluating potential of shifting to low-carbon transport modes requires considering limited travel-time budget of travelers. Despite previous studies focusing on time-relevant modal shift, there is a lack of integrated and transferable computational frameworks, which would use emerging smartphone-based high-resolution longitudinal travel datasets. This research explains and illustrates a computational framework for this purpose. The proposed framework compares observed trips with computed alternative trips and estimates the extent to which alternatives could reduce carbon emission without a significant increase in travel time.. The framework estimates potential of substituting observed car and public-transport trips with lower-carbon modes, evaluating parameters per individual traveler as well as for the whole city, from a set of temporal and spatial viewpoints. The illustrated parameters include the size and distribution of modal shifts, emission savings, and increased active-travel growth, as clustered by target mode, departure time, trip distance, and spatial coverage throughout the city. Parameters are also evaluated based on the frequently repeated trips. We evaluate usefulness of the method by analyzing door-to-door trips of a few hundred travelers, collected from smartphone traces in the Helsinki metropolitan area, Finland, during several months. The experiment's preliminary results show that, for instance, on average, 20% of frequent car trips of each traveler have a low-carbon alternative, and if the preferred alternatives are chosen, about 8% of the carbon emissions could be saved. In addition, it is seen that the spatial potential of bike as an alternative is much more sporadic throughout the city compared to that of bus, which has relatively more trips from/to city center. With few changes, the method would be applicable to other cities, bringing possibly different quantitative results. In particular, having more thorough data from large number of participants could provide implications for transportation researchers and planners to identify groups or areas for promoting mode shift. Finally, we discuss the limitations and lessons learned, highlighting future research directions.Peer reviewe

    Machine Learning Meets Communication Networks: Current Trends and Future Challenges

    Get PDF
    The growing network density and unprecedented increase in network traffic, caused by the massively expanding number of connected devices and online services, require intelligent network operations. Machine Learning (ML) has been applied in this regard in different types of networks and networking technologies to meet the requirements of future communicating devices and services. In this article, we provide a detailed account of current research on the application of ML in communication networks and shed light on future research challenges. Research on the application of ML in communication networks is described in: i) the three layers, i.e., physical, access, and network layers; and ii) novel computing and networking concepts such as Multi-access Edge Computing (MEC), Software Defined Networking (SDN), Network Functions Virtualization (NFV), and a brief overview of ML-based network security. Important future research challenges are identified and presented to help stir further research in key areas in this direction
    corecore